You are here

Stacy Horner

Molecular Genetics and Microbiology
(919) 684-1921
Research Interest: 
Membranes and organelles
Microbiology and virology
Research Summary: 
Intracellular innate immunity to hepatitis C virus and other RNA viruses
Research Description: 

We are interested in understanding the cell biology that coordinates innate immunity to hepatitis C virus (HCV) and other RNA viruses, as well as understanding the molecular mechanisms of how HCV evades these host innate immune defenses during infection. HCV is major human pathogen that is a leading cause of liver disease and liver cancer and infects nearly 200 million of people worldwide. The virus maintains a persistent course of infection in around 80% of those infected in part due to its ability to control antiviral innate immune defenses through the actions of the HCV NS3/4A protease. While HCV infection is sensed in hepatocytes by RIG-I, a cytosolic pathogen recognition receptor that engages pattern-associated molecular patterns in viral RNA to activate downstream signaling of innate immunity through the signaling adaptor protein MAVS, the HCV NS3/4A protease cleaves the MAVS protein releasing it from intracellular membranes to prevent this signaling ultimately leading to viral persistence.

Our laboratory focuses on identifying and characterizing the key host and viral factors, as well as metabolic processes, which drive and regulate innate immunity during infection with HCV and other RNA viruses that are sensed by the RIG-I pathway. In particular, we are interested in the role that intracellular membranes play in organizing innate immune signaling platforms during RNA virus infection. We are also studying how the HCV NS3/4A protein hijacks host cell components on intracellular membranes to turn off innate immune signaling during HCV infection. We use an interdisciplinary approach to study antiviral innate immunity, combining techniques from cell biology, virology, biochemistry, and systems biology to reveal the viral and host strategies that coordinate and regulate innate immunity, with the ultimate goal of developing new immunomodulatory strategies for virus treatment and prevention.

Defining the spatial relationship between hepatitis C virus infection and interferon-stimulated gene induction in the human liver.
Horner SM.
Hepatology. 2014. 59:2065-7.

Activation and evasion of antiviral innate immunity by hepatitis C virus.
Horner SM.
J Mol Biol. 2014. 426:1198-209.

Regulation of hepatic innate immunity by hepatitis C virus.
Horner SM, Gale M.
Nat Med. 2013. 19:879-88.

The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs.
McFarland AP, Horner SM, Jarret A, Joslyn RC, Bindewald E, Shapiro BA, Delker DA, Hagedorn CH, Carrington M, Gale M, Savan R.
Nat Immunol. 2014. 15:72-9.

Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus.
Horner SM, Liu HM, Park HS, Briley J, Gale M.
Proc Natl Acad Sci U S A. 2011. 108:14590-5.